Singleton is a creational design pattern, which ensures that only one object of its kind exists and provides a single point of access to it for any other code.
Singleton has almost the same pros and cons as global variables. Although they’re super-handy, they break the modularity of your code.
You can’t just use a class that depends on Singleton in some other context. You’ll have to carry the Singleton class as well. Most of the time, this limitation comes up during the creation of unit tests.
It’s pretty easy to implement a sloppy Singleton. You just need to hide the constructor and implement a static creation method.
The same class behaves incorrectly in a multithreaded environment. Multiple threads can call the creation method simultaneously and get several instances of Singleton class.
main.py: Conceptual example
class SingletonMeta(type):
"""
The Singleton class can be implemented in different ways in Python. Some
possible methods include: base class, decorator, metaclass. We will use the
metaclass because it is best suited for this purpose.
"""
_instances = {}
def __call__(cls, *args, **kwargs):
"""
Possible changes to the value of the `__init__` argument do not affect
the returned instance.
"""
if cls not in cls._instances:
instance = super().__call__(*args, **kwargs)
cls._instances[cls] = instance
return cls._instances[cls]
class Singleton(metaclass=SingletonMeta):
def some_business_logic(self):
"""
Finally, any singleton should define some business logic, which can be
executed on its instance.
"""
# ...
if __name__ == "__main__":
# The client code.
s1 = Singleton()
s2 = Singleton()
if id(s1) == id(s2):
print("Singleton works, both variables contain the same instance.")
else:
print("Singleton failed, variables contain different instances.")
Output.txt: Execution result
Singleton works, both variables contain the same instance.
Thread-safe Singleton
To fix the problem, you have to synchronize threads during the first creation of the Singleton object.
main.py: Conceptual example
from threading import Lock, Thread
class SingletonMeta(type):
"""
This is a thread-safe implementation of Singleton.
"""
_instances = {}
_lock: Lock = Lock()
"""
We now have a lock object that will be used to synchronize threads during
first access to the Singleton.
"""
def __call__(cls, *args, **kwargs):
"""
Possible changes to the value of the `__init__` argument do not affect
the returned instance.
"""
# Now, imagine that the program has just been launched. Since there's no
# Singleton instance yet, multiple threads can simultaneously pass the
# previous conditional and reach this point almost at the same time. The
# first of them will acquire lock and will proceed further, while the
# rest will wait here.
with cls._lock:
# The first thread to acquire the lock, reaches this conditional,
# goes inside and creates the Singleton instance. Once it leaves the
# lock block, a thread that might have been waiting for the lock
# release may then enter this section. But since the Singleton field
# is already initialized, the thread won't create a new object.
if cls not in cls._instances:
instance = super().__call__(*args, **kwargs)
cls._instances[cls] = instance
return cls._instances[cls]
class Singleton(metaclass=SingletonMeta):
value: str = None
"""
We'll use this property to prove that our Singleton really works.
"""
def __init__(self, value: str) -> None:
self.value = value
def some_business_logic(self):
"""
Finally, any singleton should define some business logic, which can be
executed on its instance.
"""
def test_singleton(value: str) -> None:
singleton = Singleton(value)
print(singleton.value)
if __name__ == "__main__":
# The client code.
print("If you see the same value, then singleton was reused (yay!)\n"
"If you see different values, "
"then 2 singletons were created (booo!!)\n\n"
"RESULT:\n")
process1 = Thread(target=test_singleton, args=("FOO",))
process2 = Thread(target=test_singleton, args=("BAR",))
process1.start()
process2.start()
Output.txt: Execution result
If you see the same value, then singleton was reused (yay!)
If you see different values, then 2 singletons were created (booo!!)
RESULT:
FOO
FOO